3,949 research outputs found

    A 3-field earth-heat-exchange system for a school building in Imola, Italy: Monitoring results

    Get PDF
    The present study reports the results of a 12-month-long monitoring campaign of an earth-to-air horizontal heat exchanger (EAHX) system in a school complex in Imola, Italy. With more than 2kmof buried pipes, it represents one of the biggest Italian applications of this technology. Considerable differences between inlet and outlet air temperature have been noticed both in winter and in summer. Air temperature and relative humidity have been represented over a psychrometric chart while the energy performance of the system was analysed based on data of sensible heat exchange.The monitored results have been compared with three other cases presented in literature in order to verify the parameter values of different EAHX in various climates and design condition

    A fast and flexible machine learning approach to data quality monitoring

    Get PDF
    We present a machine learning based approach for real-time monitoring of particle detectors. The proposed strategy evaluates the compatibility between incoming batches of experimental data and a reference sample representing the data behavior in normal conditions by implementing a likelihood-ratio hypothesis test. The core model is powered by recent large-scale implementations of kernel methods, nonparametric learning algorithms that can approximate any continuous function given enough data. The resulting algorithm is fast, efficient and agnostic about the type of potential anomaly in the data. We show the performance of the model on multivariate data from a drift tube chambers muon detector

    Differential Recruitment of Auditory Cortices in the Consolidation of Recent Auditory Fearful Memories.

    Get PDF
    Memories of frightening events require a protracted consolidation process. Sensory cortex, such as the auditory cortex, is involved in the formation of fearful memories with a more complex sensory stimulus pattern. It remains controversial, however, whether the auditory cortex is also required for fearful memories related to simple sensory stimuli. In the present study, we found that, 1 d after training, the temporary inactivation of either the most anterior region of the auditory cortex, including the primary (Te1) cortex, or the most posterior region, which included the secondary (Te2) component, did not affect the retention of recent memories, which is consistent with the current literature. However, at this time point, the inactivation of the entire auditory cortices completely prevented the formation of new memories. Amnesia was site specific and was not due to auditory stimuli perception or processing and strictly related to the interference with memory consolidation processes. Strikingly, at a late time interval 4 d after training, blocking the posterior part (encompassing the Te2) alone impaired memory retention, whereas the inactivation of the anterior part (encompassing the Te1) left memory unaffected. Together, these data show that the auditory cortex is necessary for the consolidation of auditory fearful memories related to simple tones in rats. Moreover, these results suggest that, at early time intervals, memory information is processed in a distributed network composed of both the anterior and the posterior auditory cortical regions, whereas, at late time intervals, memory processing is concentrated in the most posterior part containing the Te2 region

    A hybrid passive cooling wall system: concept and laboratory testing results

    Get PDF
    The research unit associated to the Laboratory Systems for Technology Innovation (LaSTIn) of the Department of Architecture and Design as well as the Department of Energy, Polytechnic University of Turin, has investigated the possibility of producing a modular wall system for hybrid/natural passive cooling. This system uses pressure differences typical of natural air movements and it is conceived as a mean to reach a quasi-zero-energy building as foreseen by Dir. 2010/31/EU by 2020 for new constructions. In addition, it realises a high level of technological and architectural integration in building constructions. The research focuses on passive and solar cooling techniques and studies the following possible systems, designed and tested separately in laboratory: a) latent heat adsorption cells including silica gel and zeolites for controlling the specific air humidity content, with heat regeneration by a vacuum water solar collectors system; b) a low-pressure heat exchanger, with crossing flows through ducts of rectangular section, to recover sensible heat/cold from return air; c) a passive evaporative cooling element. This paper present the design concept of the wall system as well as a first series of results from laboratory testing regarding the latent heat absorption component

    Learning new physics efficiently with nonparametric methods

    Full text link
    We present a machine learning approach for model-independent new physics searches. The corresponding algorithm is powered by recent large-scale implementations of kernel methods, nonparametric learning algorithms that can approximate any continuous function given enough data. Based on the original proposal by D'Agnolo and Wulzer (arXiv:1806.02350), the model evaluates the compatibility between experimental data and a reference model, by implementing a hypothesis testing procedure based on the likelihood ratio. Model-independence is enforced by avoiding any prior assumption about the presence or shape of new physics components in the measurements. We show that our approach has dramatic advantages compared to neural network implementations in terms of training times and computational resources, while maintaining comparable performances. In particular, we conduct our tests on higher dimensional datasets, a step forward with respect to previous studies.Comment: 22 pages, 13 figure

    Retrofit of the existing buildings using a novel developed aerogel-based coating: results from an in-field monitoring

    Get PDF
    The energy retrofit of existing buildings and more in general building rehabilitation represents an important challenge in EU countries since a large part of their building stock is old, poorly insulated and affected by pathologies, i.e. mould growth, with relevant implications on users health other than aesthetical drawbacks. Unfortunately, the energy retrofit of existing buildings and particularly when dealing with historic buildings presents several issues, i.e. the compatibility between the identified solutions and the heritage value or the reduction of the internal space if internal solutions have to be adopted. An emerging solution to address the target of the energy efficiency, according to the abovementioned issues, is the application of advanced materials characterized by high thermal performance and thus allowing to keep low layer thickness. In the framework of an on-going Wall-ACE Horizon 2020 project, a set of aerogel-based novel super insulating plasters, particularly suitable for internal and external application on existing walls is under development. As far as the interior layer is concerned, so far two different aerogel-based products have been developed: an interior plaster and a thermal coating were developed respectively aimed at reducing the heating energy needs and mitigating thermal bridges mould issues. The paper reports the first results of the laboratory tests carried out on the thermal coating Moreover, a monitoring activity in a 1920s building in Torino (Italy, Lat.45°N, Long 7.65°E) was carried out to characterize the actual thermal performance of the insulating layer and to assess the technical and the hygrothermal compatibility of the intervention. The monitoring results highlight that the application of a thin thermal coating finishing layer can lead to a significant increment of the indoor surface temperature of ~1.5°C with a decrease of the wall heat losses of ~30%. Moreover, a mitigation of the effect of the thermal bridge was also observed with an increment of the node surface temperature (wall-window frame) of up to 2°C

    Development of an aerogel-based thermal coating for the energy retrofit and the prevention of condensation risk in existing buildings

    Get PDF
    The energy retrofit of existing buildings, particularly historic and/or listed buildings, presents several issues; that is, the compatibility between the identified solutions and the heritage value..
    • …
    corecore